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Gradient  extremals are curves in configuration space defined by the condition 
that the gradient of  the potential energy is an eigenvector of  the Hessian 
matrix. Solutions of  a corresponding equation go along a valley floor or along 
a crest of a ridge, if the norm of the gradient is a minimum, and along a 
cirque or a cliff or a flank of one of the two if the gradient norm is a maximum. 
Properties of  gradient extremals are discussed for simple 2D model surfaces 
including the problem of valley bifurcations. 
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I. Introduction 

In the adiabatic approach,  the reactive rearrangement of a chemical system is 
described by a motion of the system point on the potential energy surfaces (PES) 
from one minimum over a saddlepoint (SP) to another minimum. Once the 
stationary points have been determined, the next issue of interest is the characteriz- 
ation of possible reaction channels by valleys of the PES and hence, the definition 
of PES valleys by a formula of their valley floor. This is done in [1] by gradient 
extremals (GE) (cf also former papers cited there). 

The next question is the problem of valley bifurcations. In 1984 we published a 
paper  dealing with the steepest descent path [2], and a further aspect of  this 
matter was discussed in a recent note [3]. A steepest descent does not, however, 
indicate a bifurcation [2], so here we tackle this problem by tracing the valleys 
of  the PES. We continue the treatment of  [1] and use an example of Hoffman, 
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Nord and Ruedenberg (HNR) [1] with changed parametrisation. We restrict 
ourselves to a Euclidean metric and to the two-dimensional (2D) case. Since it 
contains nearly all phenomena of PES paths of interest arising in real chemical 
systems and is already complicated. The N-dimensional problem has been out- 
lined in [1], and a numerical procedure which traces a nonbifurcated N- 
dimensional GE has been recently proposed [4]. 

The aim of  the present paper is a further elucidation of the conundrum of whether 
the rise of  a valley succeeds or is flattened and disappears at the ends. In general, 
this happens in regions of  the PES far away from stationary points (where 
bifurcations can emerge also [6]). Stable molecular vibrations need a convex 
bowl at the bottom of  the PES, and a reaction goes over a SP. But before a 
chemical reaction starting in a bowl takes place the system first must be excited. 
It is possible that the reaction reaches very structured parts of  the PES, in which 
case the valley may disappear somewhere in the mountains, the corresponding 
mode ceases to exist, its level ladder should end and its vibrational energy be 
redistributed into other modes. Hence, it is to be expected that changes in the 
PES valleys would be accompanied by strong changes of the spectroscopic 
behaviour of the molecule. It is therefore of  great interest, to compute bifurcation 
points (BP) on a given PES and then to understand their influence on the spectrum 
of the molecule. The latter aim is the basis of a forthcoming paper by the author. 
The calculation of BPs is illustrated by some simple, but instructive, examples 
of  analytic surfaces which give us the possibility of  discussing the more abstract 
Basilevsky classification [7, 8] of BP's with simple solvable equations. We con- 
elude the mathematical treatment with a discussion of the "strange" third GE of 
the HNR  example [1] in the light of the Basilevsky classification [8]. We show 
how only a small change in a parameter of the PES makes a qualitative change 
in the BP character. 

In a physical discussion we compare the quasilinear behaviour and internal 
energy redistribution which are consequences of PES valley bifurcations. The 
molecule HC N should be an interesting candidate for understanding bifurcations 
of  valley paths. 

2. Gradient extremals 

We recall the definition of Hoffman, Nord and Ruedenberg (HNR) [1] (slightly 
modified): 

A gradient extremal (GE) intersects every contour line in that point where the 
absolute value of the gradient is an extremal value compared to other gradient 
values on the same contour. 

(Gradients are always perpendicular to the contour line.) We introduce the so 
called defect functional [5] for the gradient norm 

o . ( x , y ) = � 8 9  ' 2 1 2 , 2 y)ll ==u~+=u, (1) 
of the gradient (Ux, Uy) where U ( x ,  y )  is the energy surface over a 2D configur- 
ation space R 2. We use the standard partial derivative notation. The way to 
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determine an extremal of  the defect functional or along a contour line of  U(x, y) 
is to search for solutions of  

t" grad tr = 0, (2) 

where  t is the unit tangent vector of  the contour line U(x, y ) =  constant or 
y = cl (x), and grad tr = H -  grad U. (We use small initial letters of  a contour line 
cl (x) for an explicit functional relation and capitals for corresponding implicit 
definitions). Equation (2) can be understood as a condensation of a formula for 
the direction derivative of  the o--functional along cl (x). The vector part  of  grad o- 
in directions other than t is cancelled by the scalar product with t. Condition 
equation (2) remains in the assumed extremal condition along cl (x). In the 2D 
case we simply have 

t = ( Uy ,  - u x ) / ( 2 o - )  1/2, 

and we get from Eq. (2) the equation for a gradient extremal [1] 

GE (x, y) 2 2 = Uy)-Ji - Uxy ( U x - ( Uyy - Uxx ) U x U y  = 0. (3)  

At first sight, Eq. (3) seems to be a differential equation [1], but here we have 
to differentiate the given energy U = U(x, y) at any argument (x, y). The result 
at a point (x, y) is a value, zero or nonzero. The requirement for GE to be zero 
in Eq. (3) makes a (maybe implicit) functional relation of x and y, not a differential 
equation. Any couple (x, y) of  the configuration plane can be tested in Eq. (3). 
In general only a subset of  the plane will give a solution. But already in the 2D 
case it is not clear whether we get a 1D curve y = g e  (x). We show this by a 
simple counterexample: 

Example 1. The model energy is a paraboloid of  rotation 

U(x, y) = x2 + y 2 

We get Uxy = 0, Ux~ = 2, Uyy = 2, and 

GE (x, y) = 0 (4x2-  4y 2) + 0(4xy) = 0. 

Every point (x, y) fulfils the GE equation. Thus, the whole plane is itself GE. 
At all points except the origin there are two eigenvector fields, one tangent to 
the profile parabola,  the other tangent to the circle of  revolution in a horizontal 
plane. 

I f  we have a somewhat more complicated surface U(x, y) we can assume that 
we get a 1D curve solving the GE condition equation (3). We emphasize that we 
look for curves GE (x, y ) =  0 or y = ge (x) in the (x, y)-plane.  The valley floor 
path on the potential landscape then is the energy profile over this GE curve or, 
conversely, the GE is the projection of the valley floor on U(x, y) = U(x, ge (x)) 
into the (x, y)-plane.  

Properties of  GE 's  are outlined [1]. (1) All stationary points are on  GE because 
�9 there U~ = Uy = 0. (2) Further we have the somewhat surprising behaviour that, 
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in general, the direction o f  the gradient  and of  the tangent  to a G E  form a finite 
angle. 

To unders tand  point  (2) we look at GE  (x, y)  = 0 as an implicit definition o f  a 
curve y = ge (x), and we assume a displacement  (dx, dy) along the GE. We get 
f rom Eq. (3), G E  (x, y)  = 0, that  

G E x  dx + GEy dy = O, 

o r  

d y  
d x  - ge' (x) = - G E x / G E y  (4) 

(if GEy # 0). It seems (without  any p roo f  here) easy to believe that  the two vectors 
( [Ix, Uy) and ( - G E y ,  GEx) point  in different directions because Eq. (4) has third 
order  derivatives o f  U cf  [1]. 

To discuss further  details we look for some simple model  surfaces. First we give 
a model  containing three GE ' s  with a very normal  behaviour.  

Example 2. 

U(x,  y )  = l ( xy  + 2)(y - x). (5) 

We find three valleys and  three ridges meeting in a central region. We denote 
valleys by Va, v2, v3 and ridges by rl, r 2 and r3, clockwise. F rom Eq. (3) we find 
the formula  

G E  (x, y)  = (x + y)(2  + xy  - (y - x ) ( ( y  - x )  2 -  2) 1/2) 

x (2 + xy  + (y - x ) ( ( y  - x )  z -  2) 1/2) = 0, 

III . 

V 2 

Fig. 1. Model surface U(x, y)= 
�89 where vi is a valley, 
r~ a ridge, GE a gradient extremal 
(fat curves). Contour lines, except 
for those at -0.5, 0 and 0.5 (dot- 
dashed), are solid 
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where the three factors give three different branches o f  the solution o f  the GE 
condition.  The valleys Vl and v3 are connected by a GE  over SP2 numbered  GEl ,  
the ridges r3 and rl are connected by GE No. 2 over SPI.  (Of  course, the GE 
definition equat ion (2) makes no difference between the floor line o f  a valley and 
the crest o f  a ridge. In bo th  cases o- is minimal.) Note  that  SP2 is lower than SP1. 
The third straight GE3 y = - x  coming uphill out  o f  v2 meets the SP1, then goes 
downhil l  th rough point  (0, 0) to SP2 and at last it goes again up the ridge r2, see 
Fig. 2. In the H N R  classification [1] the GE3 in v2 traces a cirque and on r2 it 
traces a cliff. The point  (0, 0) is a so-called valley-ridge inflection point  [6], but  
we choose to call it cirque-cliff inflection (CCI)  point  as this is consistent with 
[1], see Fig. 3. The three GE ' s  o f  Fig. 1 meet exactly in the two SP's and no 
further bifurcat ion emerges. The CCI  point  is not  a bifurcat ion point. Trajectories 
or thogonal  to the contour  lines are possible in the six sections of  the plane divided 
by the GE's .  Thus, except for GE3 itself, there exists no steepest descent line 
f rom any ridge to its opposi te  valley. 

Example 3. 

U(x, y) = �89 - 2)(y - x). (6) 

Now,  we find the SP's to be on the same contour  line, y = cl (x) = x o f  height 
zero, as the C C I  point. With a little imaginat ion one can imagine Fig. 4 as a 
double  " m o n k e y "  saddle where the one SP is flattened to two  SP's and a CCI  
point  in between,  cf Fig. 5. One readily ascertains f rom Eq. (3} the condi t ion 

G E  (x, y)  = ( x + y ) ( 2 - x y  - ( y  - x ) ( ( y  - x )2+ 2) '/2) 

x (2 - x y +  (y - x ) ( ( y  - x)2 + 2) '/2) = 0 

which again gives three GE branches. GE3 from northwest  to southeast  goes 
steadily uphill through the CCI  point  (0, 0). SP, connects  v, and v2, and SP2 
connects v3 and v2. It seems that we find no connect ion between Vl and v3, or 
ra and r3. Two branches o f  GE,  coming from v, and v3 go over SP~ and SP2, as 
expected, and flow into valley v2. There they meet at the point  

BP, = (_(~),/2, (~)1/2). 

/ ,-x _( 
2 GEl 3 

Fig. 2. Energy profile o v e r  G E  3 from northwest to southeast in Fig. 1 

Fig. 3. Illustration of contours (solid lines); a GE for a valley (dashed line); a GE for a ridge 
(dot-dashed line); a GE along cirque; (dotted) CCI point; and cliff from bowl B to summit S 
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~7.ii,~'!fx\"X, Fig. 4. Model surface U(x, y)  = 
� 8 9  where BP is a 
bifurcation point 

Analogously, two branches of  G E  2 going down ridges rl and r 3 cross the SP's 
and meet at 

BF,=((~)'/',-(~U 2) 

on the ridge r2 crossing GE 3 . If we look at the valleys clearly we expect a 
bifurcation of  v2 into Vl and v3. The bifurcation point (BP) on the ascending 
GE3 indeed exists but the two side valleys emerge only very slightly. We get two 

V 

Fig. 5. View uphill on the surface 
of  Fig. 4 from valley D 2 along GE 3 



Gradient extremals and valley floor bifurcations 453 

BP's  o f  GE3 by a formula  system of  Basilevsky [7] 

Utt( Utt -- Ugg )-]- UgUgtt = O, 
(7) 

Utg = 0, 

where g, t denotes direction derivatives in the gradient and the tangential direction 
on the contour  line. In  the symmetric  model  o f  Eq. (6), if we are interested only 
in the points o f  the diagonal  GE  3 with y = - x ,  the direction derivatives can be 
easily obtained by a 7r/2 rotat ion of  the (x, y)  coordinates in (g, t) "coord ina tes" :  

x = ( t - g ) / 2 1 / 2 ,  y = ( t + g ) / 2 1 / 2 .  

We get the representat ion o f  the surface equat ion (6) 

u( t, g) = g( t 2 - g 2 - 4 ) / 2 3 / 2 ,  

and the derivatives 

Ug = ( t2- -3g2--4) /2  3/2, u, = tg/21/2, 

Ugg -- - 3 g / 2  l/z, u,, -'- g/21/2, Utg = t/21/2, 

Ugtt = 1/21/2. 

With condi t ion equat ion (7) we get t = 0, 5g2+ 1 2 - 4  = 0, 

Thus, 

g = ::[221/2 

and by a back- t ransformat ion the given BP's in (x, y)  coordinates result. They 
are the triple points q, and ~ in the Basilevsky classification [8]. 

What  happens  in a bifurcat ion point  which is no SP? On GE3 the gradient takes 
a maximal  value if we test it over a contour  line, see Fig. 6a. Thus, v2 is a cirque 
th roughout  and rE a cliff [1]. In BP's, a ~r-curve over a contour  line flattens to a 
horizontal  line, (Fig. 6b). In a local ne ighbourhood  of  the BP, every point  of  the 

r 
Fig. 6. o- profile over contour lines (el) of Fig. 
4. a cl through point (-1, 1); b el through BP1, SP 1 
e cl through point (0, 0) 

a 

6' 

6 

4 

SP 2 cl 

2 
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contour line shows the same cr value. Locally we therefor have a situation 
analogous to Example 1, since we get the GE property for a whole piece of  a 
contour line. Between BP1 and the CCI point (0, 0) in addition to the maximal 
o -on  the contour line indicating GE3, we get two minimal or points indicating 
the branches of  GEl (Fig. 6c). On GE3, the ray y = - x ,  we have the values 

o- = (1 -~3x2)2 

and on the contour line zero we have o- = (1 - x 2 / 2 )  2. Going out of  SP1, for an 
orthogonal trajectory we observe the same direction as for GEl .  Thus, GEl 
indicates the real valley over SP1 here, and later GEl turns to the right with its 
valley ending by flattening in BP~ on the slope of  cirque v2. The valley of GEl 
near BP1 is so imperceptible that the gradient of  the surface nearly suppresses 
its influence. Orthogonal trajectories flowing over the piece of  the axis y = x 
between the SP's (we see a dike) cross the GEl  in cirque v2 and the GE2 on cliff 
r2, almost without distortion. The reason is the possible divergence of the direction 
of gradient and of the vector tangential to a GE mentioned above. 

Again in the CCI point we do not find any branching. In (0, 0) we have a nonzero 
gradient, but the Hessian 

H _ _ (  - y  y - x )  
y - x  x 

also has two zero eigenvalues, as in Example 2. So, here a "branching" condition 
for a steepest descent path is fulfilled [7]: 

ugg = 0, utg = 0. (8) 

The CCI  point lies on the straight contour line y = x where we have the orthogonal 
gradient direction ( 1 , - 1 ) ,  except at the two SP's where the gradient vanishes. 
This is the direction of the GE3 itself. In Example 2 we find the analogous gradient 
( - 1 ,  1). Hence, there is no branching of an orthogonal trajectory, and it follows 
that condition equation (8) (Eq. (7) of  [7]) is not sufficient. Orthogonal trajectories 
cannot bifurcate on a surface which is continuous and smooth, except at stationary 
points, cf [6]. In minima they meet asymptotically from nearly all directions 
along the direction of the smallest eigenvalue. 

E x a m p l e  4. We treat a modified H N R  model 

U ( x ,  y )  -- l ( xy2  - y x  2 +/xx 2 + 2y - 3), (9) 

where we include a parameter /~.  Here , /z  -- 1 is the H N R  surface [1]. It is easy 
to execute derivations of  the GE condition equation (3) with this model surface 
equation (9). It gives a polynomial  of  fifth degree in x and y. Even for /x  = 1, it 
is not easy to factorize. Hence, the GE condition implicitly defines the GE curves. 
I f  we use the advantage of a 2D model, we can solve it by a point-by-point 
calculation over a close grid and draw contour curves, GE (x, y ) =  constant, 
including the zero curve. This is done in Figs. 7-9 (cf. Fig. 2 in [1]). Model 4 is 
an asymmetric distortion of  models 2 and 3. This results in a dramatic change 
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Fig. 7. Model surface U(x, y) = 
�89 x) + l.15x2+ 2y -3 )  
including GE's, SP denotes a saddle 
point 

of  the GE behaviour in the central region of  the surface. With the experience of  
Examples 2 and 3 we can give an explanation of  the "strange" central pieces of  
the GE's in Figs. 7-9. In Fig. 8 we observe a straight GEa from south to north, 
i.e. from v, to rl. The two other GE's cross GE, at true BP's of  the type in 
Example 3, but with a nonorthogonal  crossing angle. If we vary the parameter 
/z we shift mainly the SP2. For /z > 1.08 it is raised, for /z < 1.08 it is lowered. 
In both cases we "lacerate" the BP's and only retain some turning points of  the 
corresponding GE's. The turning point character of  the central GE in the former 

Fig. 8. Model surface U(x, y) = 
�89 - x )  + 1 .08x 2 + 2y - 3) including 
GE's 
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bifurcation region can be better observed in case/z  = 1.15 (Fig. 7), because here 
branches which meet at an acute angle are connected. In the H N R  case [1] with 
/z = 1.0 we get obtuse-angled branches. 

With GEl  (valley floor path) and GE2 (ridge crest path) the representation in 
Fig. 9 gives a pattern as in Example 2. Only the GE 3 seems very strange, showing 
a strong deviation from the straight path of  Example 2 in the central region. 

The mathematical  question of  how to calculate the /z  value where a bifurcation 
exists is quite a difficult one. Eq. (7) cannot directly be used because we do not 
know the corresponding gradient and contour line tangent at this point. So we 
cannot calculate the direction derivatives in condition equation (7). For a more 
detailed discussion see [9]. 

Now, let us discuss the H N R  case tz = 1 in some detail. In valley vl with 
U(x, y) < -1 .5  we find normal behaviour; namely the existence of a unique GEl 
tracing the valley floor and coming from minus infinity. GEl  then turns up to 
the right near the point (0.4,-0.05)  toward SP2. On contour lines lower than 
-1 .5  in Vl, at the crossing with GEl ,  we have by definition an extremal of  o-, 
namely a minimal value. Indeed, if we leave the GEl crossing along a contour 
line to the right or to the left we get an increase of  o-. At first sight, we can check 
this by a continuous shortening of  the distance to the next contour line. But on 
the contour line ( -1 .5)  walking through (0, 0) the o- profile suffers a change: a 
shoulder emerges. We have Ux(0, 0 ) =  0, Uy = 3, and the Hessian elements 

Uxx = 1, Uyy = O, Uxy = Uy x = O. ( 1 0 )  

i E 

Fig. 9. Model surface U(x, y)= 
�89 -x)+ x2 + 2y-3), cf [1], 
including GE's and a piece of the 
contact line (dotted) 
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The gradient actually pointing in the y-direction is parallel to an eigenvector 
(which in addition is a zero eigenvector). Hence, the point (0, 0) is a GE point. 
It is a double point in the Basilevsky classification [8]. I f  we go uphill to the left 
from (0, 0) we can now trace a new valley floor of  GE3 up to SP1 which must be 
characterized by a second minimum of or. The cr shoulder of  the cr profile over 
(0, 0) on the ( -1 .5)-contour  line splits on higher contour lines into a minimum 
and a maximum. In Fig. 10 the or profile along the contour line ( - 1 )  is given. 
Clearly, between the two minima there exists a maximum, but in contrast to 
Example 3 and to the case /x = 1.08, the origin of  the two new or extremals is 
outside the old GEl .  The maximal o- value belongs to the central arc of  GE3 
between (0, 0) and (2, 2). It begins at (0, 0) in tracing the end cirque of Vl. Going 
uphill it does not find a simple CCI point but a broad intermediate region which 
is characterized by contact of  a flank of the central ridge rl and of a flank of v~ 
leading to SP2. We can define a contact line of  the two flanks by connecting 
those points on contour lines having curvature zero. I f  we walk along a contour 
line (cl) we go from convex behaviour in valley vl to concave behaviour on ridge 
rl. Thus, the equipotential line somewhere shows a change of  curvature from 
plus to minus: this is the point on the contact line. We again treat U(x, y)= 
constant as an implicit definition of the contour line y = cl (x) and get the 
condition 

cl"(x)=(2UxUyUxy- 2 U,:2 Uyy)/ 3 UyUxx - (11) Uy = O, 

( i f  Uy # 0). We set t '= ( U y , -  U~), which is a non normed tangential vector 
orthogonal to the gradient of  U. Eq. (11) gives the condition 

/'. H .  ~= 0 (12) 

for a point (x, y) to be an inflection point on a contour line where two flanks 
stick together. In general, the G E  3 passing the CCI belt and the contact line 
dividing the flanks of  ridge rl and valley v~ do not coincide. They do, however, 
cross at the point (0.685, 0.920), cf [1], where the Hessian H has a zero eigenvector 
parallel to [ At this point for Eq. (3) we get 

( t . H ) . g = O . g = O .  

Thus, it is on the GE3. On the rest of  the contact line we still have a zero 
eigenvalue of H, but the corresponding eigenvector is not parallel to t, (a behaviour 

Fig. 10. ~r profile over the contour line 
( -1 )  in  Fig. 9 

0.5 

f loor  cirque 

GE 3 GE 3 GE 1 c/-1 
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which is also seen near the SP's). From point (0.685, 0.920) downhill to (0, 0) 
the GE3 traces the maximal cirque region of the flank of valley vl, and uphill to 
(2, 2) the GEa traces the maximal cliff region of the flank of rl. So, over three 
contour lines the CCI  belt substitutes for the CCI  point as in Examples 2 and 
3. The model surface in Fig. 9 consists of  three valleys and three ridges meeting 
in an asymmetric central region. An intuitive concept of  a valley vl bifurcating 
uphill to SP~ and SP2, and of  a ridge rl also bifurcating downhill to SP~ and SP2 
is not supported by the GE result. The valley floor from SP~ downhill ends in 
(0,0), analogously the crest to the right from SP2 uphill on rl in northwest 
direction ends in (2, 2) (cf an analogous result on another simple model surface 
in [10]). The end of a valley floor downhill is the mathematical  result of  a lacerated 
bifurcation point and of  a new connected arc to a cirque ascending GE branch. 
It is characterized by Basilevsky's double point [8] which in mathematical  terms 
is a turning point [9]. 

Of  course, f rom any point of  the final floor we can draw a steepest descent line 
and thus get a connection, or a bridge, over the region behind (0, 0), i.e. over 
the lacerated bifurcation region. The numerical result of  a GE test in this region 
gives GE (x, y ) ~  0, but the deviation from zero is only small. We call such a 
bridged region a quasivalley from inspection of  the 2D, Fig. 9. The former 
bifurcation point of  GE 's  in Fig. 8 for the case ~ = 1.08 now changes in a flat 
SP region of  a GE surface surrounded by zero contour lines. These zero equi- 
potential lines are the GE ' s  of  the model surface. 

3. Discussion 

On PES's we do not generally find a coincidence of  SP's CCI  points and BP's. 
With clear definitions of  these points on the GE curves, we now have a well 
suited instrument for characterizing PES's. 

First of  all, a first order SP gives the globally minimal energy required to drive 
a reaction of a chemical configuration over the corresponding transition structure. 
It should be noted that SP's of  higher order are also of  some chemical interest 
[11]. From a first order SP we can trace a steepest descent trajectory starting in 
an eigenvector direction of  the Hessian. This gives Fukui 's IRC, the intrinsic 
reaction coordinate [12]. Using the terms of  a very old paper  this path is the 
watercourse [13], because the actual acceleration of a water drop is tangential 
to the negative gradient. In the general case, however, we have no local criterion 
for a steepest descent trajectory being the IRC [2, 3]; i.e. there is no way to tell 
if a point is or is not on this IRC path by looking at the PES only in the 
neighbourhood of a point. 

This deficiency is surmounted by the GE definition if we additionally test whether 
we get a valley or a ridge for a GE [1]. The price is more computat ion for both 
the Hessian elements and the curve tracing of  a corresponding GE from any 
stationary point to another  [4]. In general, the latter is complicated [9] and only 
theoretically possible. I f  we use crude curve tracing algorithms then sometimes 
we may hop over bifurcation regions and bridge different branches of  GE 's  with 
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diagonal turning points. In summary GE's  are a tool to reach an SP on a 1D 
path in an "unknown"  landscape. 

The steepest descent path and GE are curves defined on the static PES: they are 
only a frame for the real dynamics of  a molecular transition in a chemical reaction. 
We have seen in Example 3 how imperceptibly a side valley can emerge. Thus, 
a molecular vibration, a mode, will not feel a BP but will be stable in the region 
around the BP of a GE, as long as the contour lines are still convex. The situation 
changes dramatically behind the CCI point. Then the contour lines become 
concave, from the point of  view of the mode, and the molecular vibration bouncing 
on the cliff shows a propensity to vibrational redistribution. We assume two 
possible kinds of  qualitative behaviour. 

(i) I f  we have a fiat cliff which quickly goes over into a ridge and which is 
accompanied by two closely neighbouring valleys, then the mode bounces on a 
double minimum section of the PES. Such a vibration is quantum mechanically 
possible and the spectroscopic category of quasilinear molecules gives an example, 
cf [14] for a review. The angle of  a corresponding valley floor with the vibration 
direction should not be greater than 25~ ~ in the molecular geometry [14], 
Table XI I I .  Figure 13 in [14] is the commonly used representation of the 
quasilinearity problem. It shows different 1D potential energy curves of  double 
minimum shape for different quasilinear states of  the same mode, i.e. in a 2D 
view a ridge and two ascenting neighbouring valleys. The slightly strange character 
of  a quasilinear mode is due to the fact that a stretch mode goes along the crest 
of  a ridge. 

(ii) I f  we have a broad and precipitous cliff then the mode cannot be stabilized 
and suffers a vibrational redistribution. Recently, we have assumed this to be the 
case in H C N  [15] since even in its fundamental  transition the /"1 mode, which 
is mainly the CN stretch, reaches a concave contour line in its compression phase. 
As a result, the quantum state (100) of  H C N  exist, but is expected to be quite 
unstable. We could assign the redistribution process to two effects, (i) the 
anomalous infrared excitation of single rotational lines of  Vl itself connected 
with a sudden redistribution to 3v 1 [15], and (ii) the known H C N  gas laser [16]. 

Hence, CCI  points or belts are very important for real molecular vibrations. Any 
CCI point.lies on a GE and if we trace a GE to reach an SP we also get the CCI  
points [1, 6]. I f  the region around the CCI  point is asymmetric it will be a factor 
which influences the direction of an excited vibration, i.e. a factor in the selection 
of possible reactions as we can imagine from Figs. 7-9. 

Cautionary remark. The definition of a valley floor, and in general of  a GE, is a 
metric dependent  concept and one needs to consider explicitly what is the 
physically relevant metric in every instance, cf the discussion in [2, 3]. This 
is because of the metric dependence of the Hessian matrix [17]. An invariant 
formulation of GE 's  is given in [18, 19], cf also the textbook [20]. 
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